
ScatterType: a Reading CAPTCHA

Resistant to Segmentation Attack

Henry S. Baird and Terry Riopka

Computer Science & Engineering Dept

Lehigh University

19 Memorial Dr West

Bethlehem, PA 18017 USA

E-mail: {baird|riopka}@cse.lehigh.edu
URL: www.cse.lehigh.edu/~baird

ABSTRACT

A reading-based CAPTCHA, called ‘ScatterType,’ designed to resist character–segmentation attacks, is de-
scribed. Its challenges are pseudorandomly synthesized images of text strings rendered in machine-print type-
faces: within each image, characters are fragmented using horizontal and vertical cuts, and the fragments are
scattered by vertical and horizontal displacements. This scattering is designed to defeat all methods known to
us for automatic segmentation into characters. As in the BaffleText CAPTCHA, English-like but unspellable
text-strings are used to defend against known-dictionary attacks. In contrast to the PessimalPrint and Baf-
fleText CAPTCHAs (and others), no physics-based image degradations, occlusions, or extraneous patterns are
employed. We report preliminary results from a human legibility trial with 57 volunteers that yielded 4275
CAPTCHA challenges and responses. ScatterType human legibility remains remarkably high even on extremely
degraded cases. We speculate that this is due to Gestalt perception abilities assisted by style-specific (here,
typeface-specific) consistency among primitive shape features of character fragments. Although recent efforts
to automate style-consistent perceptual skills have reported progress, the best known methods do not yet pose
a threat to ScatterType. The experimental data also show that subjective rating of difficulty is strongly (and
usefully) correlated with illegibility. In addition, we present early insights emerging from these data as we explore
the ScatterType design space — choice of typefaces, ’words’, cut positioning, and displacements — with the goal
of locating regimes in which ScatterType challenges remain comfortably legible to almost all people but strongly
resist mahine-vision methods for automatic segmentation into characters.
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1. INTRODUCTION

In 1997 Andrei Broder and his colleagues at the DEC Systems Research Center, developed a scheme to block
the abusive automatic submission of URLs to the AltaVista web-site [Bro01,LBBB01]. Their approach was to
challenge a potential user to read an image of printed text formed specially so that machine vision (OCR) systems
could not read it but humans still could. Since that time, inspired also by Alan Turing’s 1950 proposal of methods
for validating claims of artificial intelligence [Tur50], many such CAPTCHAs — Completely Automated Public
Turing tests to tell Computers and Humans Apart — have been developed, including CMU’s EZ-Gimpy [BAL00,
HB01], PARC’s PessimalPrint [CBF01] and BaffleText [CB03], Paypal’s CAPTCHA ((www.paypal.com)), and
Microsoft’s CAPTCHA [SSB03]. In addition to these, which have been describe in the literature, many others
have been put into practice. Examples of these are shown and critiqued in Figures 1–4.

Fully or partially successful attacks on some of these CAPTCHAs have been reported. EZ-Gimpy has
been broken by a lexicon-driven and word-shape recognition attack [MM03]. PessimalPrint has been shown
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Figure 1. Example of an AltaVista challenge: characters are chosen at random, then each is assigned to a typeface at
random, then each character is rotated and scaled, and finally (optionally, not shown here) background clutter is added.
The fact that the characters are spaced widely apart invites segment-then-recognize attacks.

Figure 2. Example of a simplified Yahoo! challenge (CMU’s “EZ GIMPY”): an English word is selected at random, then
the word (as a whole) is typeset using a typeface chosen at random, and finally the the word image is altered randomly
by a variety of means including image degradations, scoring with white lines (shown here), and non-linear deformations.
The use of a single known typeface makes this easy to segment into characters.

Figure 3. Example of a PayPal challenge: alphabetic characters and numerals are chosen at random and then typeset,
spaced widely apart, and finally a grid of dashed lines is overprinted. The wide character spacing invites segmentation
attacks.

Figure 4. Example of a PessimalPrint challenge: an English word is chosen at random, then the word (as a whole)
is typeset using a randomly chosen typeface, and finally the word-image is degraded according to randomly selected
parameters (within certain ranges) of the image degradation model. Judicious choice of image restoration preprocessing
can make character–segmentation straightforward.
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to be vulnerable to image restoration methods followed by conventional segment-then-recognize OCR [CB03].
We believe that many, perhaps most, CAPTCHAs now in use are vulnerable to (possibly custom-tailored)
preprocessing that segments the words into characters, followed by off-the-shelf or slightly customized OCR.

CAPTCHAs that appear to us to be unusually resistant to segmentation attacks include BaffleText and the
Microsoft CAPTCHA.

2. MOTIVATION

These observations motivated us to investigate CAPTCHAs which resist character–segmentation attacks. Our
approach is to fragment each character image using horizontal and vertical cuts, then allow the fragments to
drift apart to the point that it is no longer straightforward automatically to reassemble them into characters.
We have observed that, despite severe scattering, human reading skill does not deteriorate rapidly (more on this
later). This occurs, we suspect, largely because we do not apply image degradations such as blurring, thinning,
and additive noise (cf. [Bai02]) and so we do not obscure style-specific shape minutiae in the fragments. Thus
the character fragments retain many recognizable primitive shape properties — including stroke width, serif
form, curve shape, etc — which encode typeface-specific “style” information which then, in turn, assists Gestalt
perception integration at the word level.

Style-conscious pattern recognition methods — which automatically exploit knowledge that an image was
generated in a single style (e.g. one typeface, one person’s handwriting, a certain level of image quality), but
without knowledge of which style — have been shown to lower error rates [SN05,VN05]. The study of these
methods is still in its early stages. While significant progress is being made, we judge that it is unlikely that an
effective attack on ScatterType is feasible using today’s best-understood methods. In our view, a CAPTCHA
which depends on style-conscious recognition for success is likely to resist automatic attack for many years.

3. SYNTHESIZING SCATTERTYPE CHALLENGES

ScatterType challenges were synthesized by pseudorandomly choosing: (a) a text-string; (b) a typeface; and (c)
cutting and scattering parameters.

The text strings were generated using the pseudorandom variable–length character n-gram Markov model
described in [CB03], and filtered using an English spelling list to eliminate all but a few English words. As in
[CB03], this is intended to protect against lexicon constrained recognition attacks. Random strings were not used
because physchophysical evidence suggests that familiarity — even at the low level of frequently occurring short
strings of characters — improves human legibility. The BaffleText trial also indicated that the use of English-like
“words” raised the comfort level of subjects: an important feature since many people feel irritated or threatened
by CAPTCHAs. In the trials, no word was ever used twice — even with different subjects — to ensure that
mere familiarity with the words would not affect legibility.

The typefaces used were twenty-one FreeType fonts listed in Figure 14.

Cutting and scattering are applied, separately to each character (more precisely, to each character’s image
within its own ’bounding box’); then the modified character images are combined into a text-string image. A
scaling dimension (the “base length”) equal to the height of the shortest character in the alphabet (in our case,
lowercase ‘o’) is used to achieve comparable results across different text sizes. The following image operations
are performed pseudorandomly to each character separately, controlled by the following parameters.

Cutting Fraction Each character’s bounding box image is cut into rectangular blocks of size equal to this
fraction of the base length. The cutting fraction, in general, can be different in the x and y directions:
in the trial we report, they were set equal. The resulting x & y cut fractions are held constant across all
characters in a text string, but the offset locations of the cuts are chosen randomly uniformly independently
for each character.

Expansion Fraction Fragments are moved apart by this fraction of base length. The expansion fraction, in
general, can be different in x and y: in this trial, they were set equal. Tne resulting fractions are held
constant across all characters in a text string.
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ScatterType Parameter Range used in Trial

Cut Fraction (both x & y) 0.25-0.40
Expansion Fraction (both x & y) 0.10-0.30

Horizontal Scatter Mean 0.0-0.40
Vertical Scatter Mean 0.0-0.20

Scatter Standard Error (both h & v) 0.50
Character Separation 0.0-0.15

Figure 5. ScatterType parameter ranges selected for the human legibility trial.

Horizontal Scatter Each row of fragments (resulting from horizontal cutting) is moved horizontally by a
displacement chosen independently for each row: this displacement is a positive random number, expressed
as a fraction of the base length, and distributed normally with a given mean and standard error. Adjacent
rows alternate left and right movements.

Vertical Scatter Each fragment within a row (resulting from vertical cutting) is moved vertically by a displace-
ment chosen randomly independently for each fragment: this displacement is a positive random number, a
fraction of the base length, distributed normally with a given mean and standard error. Adjacent fragments
within a row alternate up and down movements.

Finally, once every character image has been cut and scattered, the resulting images are reintegrated (by pixel-
wise Boolean OR) into the final text-string image, governed by this final parameter:

Character Separation The images of cut-and-scattered characters are combined (by pixel-wise Boolean OR)
into a final text string image by locating them using the original vertical coordinate of the bounding box
center, but separating the boxes horizontally by this fraction of the width of the narrower of the two
adjacent characters’ bounding boxes. Character separation may be positive or negative: negative values
allow character images to overlap.

Note that, whereas horizontal scatter is constrained in that all fragments within a row are displaced the same
amount in the same direction, vertical scatter is not constrained: that is, the fragments within a column move
up and down independently. Scattering was implemented in this direction-sensitive manner in order, on the one
hand, to make it difficult for “ fragment stacking” methods to reassemble each character, and, on the other hand,
to provide enough proximity to assist human perception of vertical grouping among fragments in different cut
rows.

Character Separation was designed to be a fraction of the width of the narrower of each pair of adjacent
characters (instead of a fraction of the base length) in order to prevent thin characters from being “swallowed
up” by wider adjacent characters.

Before the human legibility trial (described in the next Section), we ran small-scale pilot experiments to help
us select ranges for ScatterType parameters that would be likely to yield roughly equal numbers of legible and
illegible images: the parameter ranges we selected are given in Figure 5. To generate a ScatterType challenge,
a full set of nine parameters were chosen randomly uniformly within each range independently, then applied to
generate the challenge image. As we will see, these yielded roughly half-and-half legible and illegible images: a
rich space for data analysis. These challenges are illustrated, for three levels of difficulty, in Figures 7–9.

4. LEGIBILITY TRIAL

Students, faculty, and staff in the Lehigh CSE Dept, and researchers at Avaya Labs Research, were invited to
attempt to read ScatterType challenges using ordinary browsers, served by a PHP GUI backed by a MySQL
database. A snapshot of the challenge page is shown in Figure6.
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Figure 6. An example of a ScatterType legibility trial challenge page. The Difficulty Level radio buttons (marked ’Easy’
to ’Impossible) were colored Blue, Green, Yellow, Orange, and Red. The text at the top of the page refers to the previously
answered challenge.

The text images for the challenges were displayed approximately 0.7 inches high on the monitor in an effort
to maximize legibility. The psychophysical literature [LPRS85] reports that humans can read best when the
subtended angle from the eye to the character height is 0.3-2.0◦. Assuming the distance from the eye to the
monitor screen is about 20 inches, the optimal range of character height ranges from 0.2 to 0.7 inches.

Each subject was asked, of course, to read the text and type it in, to the best of his/her ability. Then
the subject indicated the perceived “difficulty level” of reading that challenge by clicking on one of five radio
buttons arranged in a horizontal line, with the leftmost labeled “Easy” and the rightmost “Impossible”. An
arrow stretched from “Easy” to “Impossible,” in order to suggest that the buttons represented a continuum of
difficulty. This suggestion was reinforced by color: the buttons were colored Blue (for “Easy”), then Green, then
Yellow, then Orange, and finally Red (for “Impossible”). No other instructions were given explaining how to
select a Difficulty Level. No subject asked us any questions about how to assign these ratings.

Clicking on a Difficulty Level radio button advanced to the next challenge on a new page: at the top of
this page, the subject was told whether or not he/she had read the previous challenge correctly and if not, was
told the correct string. Thus the subjects understood how well they were doing and had many opportunities to
learn and adapt to ScatterType. Some subjects seemed to us to have improved significantly by the end of 100
challenges. Each challenge was associated with the user-id of the subject, and time-stamped, so it is possible in
principle to study this question quantitatively in future work.

These challenges, by careful design, ranged from trivially easy to read to impossible to read. In order to
relieve stress on the subjects, we printed cheerful encouraging remarks after each CAPTCHA, pointing out that
the immature state of the CAPTCHA was principally responsible for any illegibility.
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Figure 7. ScatterType challenges rated by subjects as “Easy” (difficulty level 1 out of 5). All of these examples were
read correctly: “aferatic,” “memari,” “heiwho,” “nampaign.”

Figure 8. ScatterType challenges rated by subjects as being of medium difficulty (difficulty level 3 out of 5). Only
one of these examples was read correctly (correct/attempt): “ovorch”/”overch”, “wouwould”, “adager”/“atlager”, “we-
land”/”wejund”.

5. EXPERIMENTAL RESULTS

A total of 4275 ScatterType challenges were used in the human legibility trial: they are illustrated in Figures 7-9,
at three subjective levels of difficulty: “Easy,” medium difficulty, and “Impossible.”

Human legibility — percentage of challenges correctly read — is summarized in Figure 10. Overall, human
legibility averaged 53%, and exceeded 73% for the two easiest levels. Legibility was strongly correlated with
subjective difficulty level, falling off monotonically with increasing subjective difficulty.

ScatterType affects the legibility of characters highly nonuniformly, as shown in Figure 11. Also, some
confusions between pairs of characters are strongly asymmetric, as shown in Figure 12: note, for example, that
‘c’ was mistaken 25% of the time for ‘e’ and 14% for ‘o,’ while ‘e’ and ‘o’ were rarely mistaken for ‘c.’ Asymmetric
confusions are commonplace in pattern recognition, of course, but the effect seems to have been amplified in
some cases by cutting and scattering. These data suggested that by judicious pruning of characters from the
alphabet we use to generate text strings, we could improve legibility. This is borne out in Figure 13: all five
difficulty levels improve nearly monotonically as confusion-prone characters are pruned, with especially strong
improvement in the two easiest levels.

An analogous effect was observed with typefaces: ceratin typefaces preserve legibility under ScatterType far
better than others (Figure 14. As with characters, judicious pruning of fonts significantly improves legibility, as

Figure 9. ScatterType challenges rated by subjects as “Impossible” (difficulty level 5 out of 5). None of these
examples were read correctly (correct/attempt): “echaeva”/”acchown”, “gealthas”/”gualing”, “beadave”/”bothere”,
“engaberse”/”caquired”
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Difficulty Level
ALL 1 2 3 4 5

Total number of challenges 4275 610 1056 1105 962 542
Percent correctly answered 52.6 81.3 73.5 56.0 32.8 7.7

Figure 10. Human reading performance as a function of the difficulty level that the subject selected.

Character q c i o u z j h f n l v t
Confusability 2.27 1.13 0.98 0.86 0.84 0.83 0.80 0.67 0.65 0.62 0.61 0.42 0.41

Figure 11. The confusability of characters (expressed as the ratio of mistaken to correct readings). Thirteen characters
are shown in descending order of confusability. A few characters were confused far more often than the rest, apparently
mostly as a result of image degradations introduced by ScatterType.

Figure 12. A subset of the human legibility character confusion matrix. The true character classes are indicated on the
Y-axis (at the left) and the interpretations of human readers on the X-axis (along the top). Shading marks character-pair
confusions which are highly asymmetric.
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Figure 13. Improvement in legibility resulting from omitting text-strings from the ScatterType lexicon that include the
most confusable characters, as a function of the number of characters pruned.

shown in Figure 15: again, all five difficulty levels improve almost monotonically as the most confusion-prone
fonts are pruned, with especially strong improvement in the medium-difficulty levels (levels 2 and 3).

6. DISCUSSION AND FUTURE WORK

The strong correlation between legibility and subjective difficulty level is similar to the behavior of BaffleText,
where the first author showed that it could be used to engineer challenges that reliably did not irritate or anger
human subjects.

Our early preliminary analysis of legibility as a function of typeface and alphabet suggests that we may by
judicious choices, raise legibility on the two easiest difficulty levels to above 90%.

The legibility trial data may shed light on several technically interesting and potentially practically important
questions.

• What improvements in legibility that can be expected from judicious choices of generating parameters
(typefaces, characters, and distributions that control cutting and scattering), so that we can control the
fraction of legible challenges?

• How well can we construct classifiers for legibility, in the feature space defined by the generating parameters,
so that we can automatically select legible challenges from among those that are generated?

• How well can we construct classifiers for legibility, in spaces determined by features that can be extracted
from the images of the challenges after they are generated? An example would be the ’Image Complexity’
metric that was correlated positively with legibility in the BaffleText trial.
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Figure 14. Legibility as a function of typeface. Some typefaces are associated with more than twice the illegibility rate
as are others.

• Given a set of ScatterType challenges, how well can we automatically select those that are likely to possess
a given subjective difficulty level?

The fact that ScatterType amplifies certain character-pair confusions and not others in an idiosyncratic way
might be exploitable. If further studey reveals that the distribution of mistakes differ between human readers
and machine vision systems, we may be able to craft policies that forgive the mistakes that humans are prone
to while red-flagging machine mistakes.

Of course every CAPTCHA including ScatterType should be tested systematically using the best available
OCR engines, and should be offered to the research community for attack by experimental machine vision
methods. Our personal knowledge of the segment-and-recognize capabilities of commercial OCR machines —
as attested by hundreds of failure cases discussed in [RNN99] — gives us confidence that they pose no threat
ScatterType today or for the forseeable future.
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Figure 15. Improvement in legibility resulting from omitting typefaces from the ScatterType design space, as a function
of the number of typefaces omitted.
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